3.142 \(\int \frac{\cos (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=107 \[ \frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{5 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

(5*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(
4*d*(a + a*Cos[c + d*x])^(5/2)) + (5*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.080487, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2750, 2650, 2649, 206} \[ \frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{5 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(5*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(
4*d*(a + a*Cos[c + d*x])^(5/2)) + (5*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{5 \int \frac{1}{(a+a \cos (c+d x))^{3/2}} \, dx}{8 a}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{5 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{5 \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{5 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac{5 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{5 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.248004, size = 65, normalized size = 0.61 \[ \frac{2 \sin (c+d x)+5 \sin (2 (c+d x))+40 \cos ^5\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{32 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(40*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 + 2*Sin[c + d*x] + 5*Sin[2*(c + d*x)])/(32*d*(a*(1 + Cos[c +
d*x]))^(5/2))

________________________________________________________________________________________

Maple [A]  time = 1.579, size = 174, normalized size = 1.6 \begin{align*}{\frac{1}{32\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 5\,\sqrt{2}\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+5\,\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{a}^{-{\frac{7}{2}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+cos(d*x+c)*a)^(5/2),x)

[Out]

1/32/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(
1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^4*a+5*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*
d*x+1/2*c)^2-2*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(7/2)/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^
2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.68154, size = 501, normalized size = 4.68 \begin{align*} \frac{5 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (5 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sq
rt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c)
 + 1)) + 4*sqrt(a*cos(d*x + c) + a)*(5*cos(d*x + c) + 1)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x
 + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.61996, size = 139, normalized size = 1.3 \begin{align*} -\frac{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{3}} - \frac{3 \, \sqrt{2}}{a^{3}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{5 \, \sqrt{2} \log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac{5}{2}}}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/32*(sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/a^3 - 3*sqrt(2)/a^3)*tan(1/2*d*x +
 1/2*c) + 5*sqrt(2)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/a^(5/2))/d